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Abstract

The equation of motion for a detonation front propagation under a Dn−κ

law is converted to a set of ordinary differential equations in the front normal

coordinate for a third order spatial accuracy. Which allows a time integration

of the system with an ODE integrator for a high accuracy.

INTRODUCTION

The propagation of a detonation wave in a homogeneous HE material can be de-
scribed with the theory of detonation shock dynamics (DSD). As the DSD theory
can accurately predict the position of a detonation front with much less cost com-
pared to DNS, especially in three-dimensions, employing DSD wherever possible is
desired.

To the leading order approximation of the DSD theory, the detonation front
velocity in the normal direction is a function of the front curvature, or a Dn −κ law
Dn = Dn(κ), where Dn is the detonation velocity and κ is the front curvature. The
motion of the front is described by a partial differential equation

∂φ/∂t + Dn|∇φ| = 0,

where φ(~r, t) = 0 defines the position of the front in space and time.

To track the front with a Dn−κ law, a third order of spatial accuracy is required
for a proper evaluation of the curvature. In the local front normal coordinate (the
shock-attached frame), the detonation front can be expressed with a local quadratic
expansion of spatial coordinates. Furthermore the equation of motion is converted
to a set of ordinary differential equations of the time dependent coefficients that
define the expansion. Then the time integration of the equation of motion can be
performed with an ODE integrator of high accuracy, such as a Runge-Kutta method.
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Figure 1: A propagating detonation front represented by a set of particles moving in

the normal direction.

A detonation front can be represented with marked particles, the motion of
each particle in the normal direction has to be solved (fig. 1). In the case of
determining the signed-distances for a point set to a propagating detonation front,
the relative motion between the front and a given point also needs to be solved as
well. In both cases, the ODE system derived in this paper would help to obtain
an accurate time integration. The trade off is a 3rd order error in space. Such an
accuracy is required for evaluation of curvature and is rather acceptable in almost
every numerical simulation.

In this paper the derivation of the time dependent ODE system from the PDE
form of the evolution equation of detonation shock dynamics is given. The accuracy
with various time integration schemes are examined numerically against an exact
integral of the ODE system for an linear Dn − κ relation.

IN THE FRONT NORMAL COORDINATE

The normal vector at a point P on the front φ(~r, t) = 0 is defined by

~n =
~∇φ

|∇φ|
.

In three-dimensions, a local Cartesian coordinate system (ξ, η, n) can be defined
by setting the origin at P with the normal at P be the n-axis, ξ and η are the
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Figure 2: A detonation front propagates for a time step, in the local surface normal

coordinate. The origin is set at a particle.

tangential unit vectors (fig. 2). In this front normal coordinate, a surface can
be generally expressed by n = h(ξ, η). We assume the surface that represents a
detonation front is sufficiently smooth to well define the curvature. Such a surface
may have an expansion in the form of

n =
a

2
ξ2 + bξη +

c

2
η2 + eξ + fη + g + h.o.t..., (1)

to the third order of spatial accuracy the front, Then the front position can be
expressed by φ = n − f(ξ, η) at any given time, with

h(ξ, η) =
a

2
ξ2 + bξη +

c

2
η2 + eξ + fη + g.

The coefficients a, b, c, e, f , and g are considered functions of time, to carry the
change of geometry of the detonation front.
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Some special properties of such an expansion associated with the surface normal
coordinate can be derived. Let us consider the moment t = t0 (without loss of
generality t0 can be set to 0). First of all because the origin is set at (ξ, η) = (0, 0),
one must have g(0) = 0.

We compute the normal vector by ên = ~∇φ/|∇φ|, and with our choice of φ we

have ~∇φ = ên − (aξ + bη + e)êξ − (cη + bξ + f)êη. At the origin (ξ, η) = (0, 0) there
must be only the ên component therefore we also have e(0) = 0 and f(0) = 0.

The system can be further simplified by rotating the front normal frame around
the n-axis to get rid of the cross term at t = 0 thus we can set b(0) = 0 also.

THE EVOLUATION EQUATION CONVERTED

TO AN ODE SYSTEM

Plugging our choice of φ into the equation of motion that ∂φ/∂t + Dn|∇φ| = 0, one
arrives at

ȧ

2
ξ2 + ḃξη +

ċ

2
η2 + ėξ + ḟη + ġ = Dn

√

Aξ2 + Bξη + Cη2 + Eξ + Fη + G,

where

A = a2+b2, B = 2b(a+c), C = c2+b2, E = 2(ae+bf), F = 2(cf+be), G = 1+e2+f 2.

We are interested in the motion of a piece of front that contains the origin with
the time integration of the system over a time step, thus we can expand the equation
for small ξ and η to obtain

ȧ

2
ξ2 + ḃξη +

ċ

2
η2 + ėξ + ḟη + ġ = Dn(Ãξ2 + B̃ξη + C̃η2 + Ẽξ + F̃ η + G̃) + h.o.t.,

where

Ã =
A

2σ
−

E2

8σ3
, B̃ =

B

2σ
−

EF

4σ3
, C̃ =

C

2σ
−

F 2

8σ3
,

Ẽ =
E

2σ
, F̃ =

F

2σ
, G̃ = σ,

σ = G̃ =
√

1 + e2 + f 2, and h.o.t. stands for higher order terms that are ignored in
this analysis.

4



Because ξ and η are arbitrary, one must have

ȧ

2
= DnÃ, ḃ = DnB̃,

ċ

2
= DnC̃,

ė = DnẼ, ḟ = DnF̃ , Ġ = DnG̃. (2)

However, because e(0) = 0 and f(0) = 0, from ė = DnẼ and ḟ = DnF̃ and
the expressions of E and F , we see that e = 0 and f = 0 satisfy both their initial
conditions and the ordinary differential equations that governs their time develop-
ment. A similar observation concludes that b = 0 as well. This should not be a
surprise because the front profile at t = 0 is symmetric to the n-axis in which the
front propagates and the equation for time development is also symmetric.

With e = 0, f = 0 and b = 0, one has σ = 1, Ã = a2, C̃ = c2 and G̃ = 1. The
ODE system can further be simplified to

ȧ = a2Dn(κ), ċ = c2Dn(κ), ġ = Dn(κ). (3)

The front curvature κ is computed with κ = ~∇ · n̂. Because n̂ = ~∇φ/|∇φ| and

~∇φ = ~∇(n −
a

2
ξ2 −

c

2
η2 − g),

therefore

n̂ =
ên − aξêξ − cη̂eη
√

1 + a2ξ2 + c2η2
,

and

κ = ~∇ · n̂ = −
a + c + ac(aξ2 + cη2)

(1 + a2ξ2 + c2η2)3/2
. (4)

In the case that the front is represented by a distribution of marked particles,
we are interested in the motion of a particle in the normal direction. Setting the
origin of the local front normal frame to the position of the particle provides ξ = 0
and η = 0 and we have the curvature of the front on the path of the particle that

κ = −(a + c),

and only the first and the third equations in (eq. 2) are coupled together.
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AN ANALYTICAL INTEGRAL WITH A SIM-

PLE Dn − κ RELATION

The coupled governing equations (eq. 2) clearly tell that

ȧ

a2
=

ċ

c2
= Dn(κ).

With the substitution of variables that u = −1/a and v = −1/c into the equa-
tions, the the ODE system is further reduced to

u̇ = Dn(κ), v̇ = Dn(κ), and ġ = Dn(κ). (5)

One obtains immediately a first integral that

v = u + 2β, (6)

where β is a time independent constant which makes the above equation true at
t = 0, thus

β =
v(0) − u(0)

2
.

An analytical solution exists for a linear form of the Dn − κ relation that

Dn = DCJ(1 − ακ), (7)

where DCJ is the CJ velocity of a detonation and can be taken to one with a time
scaling. For simplicity we assume Dn = 1 − ακ, α is the slope of the Dn − κ curve,
the total curvature is computed as

1/u + 1/v.

We can eliminate v from the governing equation to obtain

u̇ = Dn(κ) = 1 − α(
1

u
+

1

2β + u
). (8)

Thus

dt =
du

1 − α(1/u + 1/(2β + u))
,
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then one obtains an explicit integral that

t−γ = u+
2α2

√

α2 + β2
ArcTanh

(

α + β + u
√

α2 + β2

)

−α log |(u+α+β)2− (α2 +β2)|, (9)

where γ is a constant, which would make t = 0 when u = u(0) and v = v(0).

The time integration of ġ = Dn(κ) now can be related to u with another first
integral that

ġ − u̇ = 0,

because the particle was at the origin at t = 0, therefore g(0) = 0 and

g = u − u(0).

This is easy to understand considering that g is the distance traveled by a particle
on the normal-axis and u = −1/a is equivalent to the radius of curvature in the case
of a spherical wave.

An analytical integral shall be helpful in examining the accuracy of a numerical
time integration scheme.

NUMERICAL TEST WITH A LINEAR Dn − κ

To obtain the position of a particle moving in the surface normal direction with the
definition

dr/dt = Dn(κ)

without utilizing the geometry of the front, an explicit way is to use a forward Euler
method for a first order of accuracy in time. A predictor-corrector method may
be implemented for a second order accuracy with the curvature at the next time
step becomes available after all the particles are updated (with the explicit Euler
method).

The proposed method solves the evolution equation of the front (a PDE) locally
by converting the governing equation to a set of ODEs with a third order of spatial
accuracy. The time integration can be as accurate as arbitrarily required with an
existing ODE integrator.

To demonstrate the better accuracy with solving the ODE system derived previ-
ously, compared to a common numerical scheme, we employ a linear Dn−κ relation
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Dn = 1 − ακ and integrate it for a time step ∆t. The result is checked against the
analytical integral obtained in the section above.

For simplicity we also take that u(0) = v(0) therefore β = 0 and we have an
axi-symmetry case here. The analytical integral (eq. 9) then is reduced to

t = γ + u + 2α log |u − 2α|. (10)

We pick α = 0.1, u(0) = v(0) = 1 for the calculation in this section. The distance
traveled by a given particle on the front initially described with the above parameters
is computed, with both the forward Euler method, the Trapezoid method, and the
proposed method with a 4th order Runga-Kutta method, for a variable size of dt.
The results obtained are compared with the analytical solution for an evaluation of
accuracy.

The comparison between results from various time integration methods are
shown in the table below

∆t EEuler ETrapezoid ERK4(1) ERK4(2) distance
0.1 0.000764 0.000017 0.000000 0.000000 0.080764
0.2 0.002927 0.000125 0.000000 0.000000 0.162927
0.4 0.010078 0.000846 0.000005 0.000000 0.330788
0.8 0.037325 0.005020 0.000082 0.000006 0.677325
1.6 0.117873 0.024599 0.001014 0.000097 1.397873

Table 1: The comparison of accuracy in time integration with a linear Dn−κ relation

Dn = 1 − 0.1κ for an axi-symmetric detonation propagation.

the letter E stands for absolute numerical error against the exact solution. EEuler,
ETrapezoid, ERK4(1), and ERK4(2) stand for the absolute errors with the distance
traveled by a marked particle in a time step compared to the exact solution (eq.
10) of the ODE system reduced from the DSD evolution equation with a 3rd order
spatial accuracy. RK4(1) for a one step 4th order Runga-Kutta integration, RK4(2)
for a two step one. distance is the distance traveled by a marked particle on the
detonation front during the time step.

Without introducing the ODE system described above, the time integration of
the DSD evolution equation with a marked particle representation of the detonation
front would be uneasy to implement for the Trapezoid method because curvature
cannot be easily updated. A Runga-Kutta method with multiple steps is nearly
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impossible to implement for the same reason. Thus with a trade off on spatial
accuracy to 3rd order (which is sufficient to adequately handle curvature), one is
able to obtain arbitrarily accurate time integration with the method described in
this paper by solving a simple ODE system.

CONCLUSION

The evolution equation for a detonation front described by detonation shock dy-
namics is locally converted to a set of simple ODE system with a 3rd order spatial
accuracy. The motion of a point on the detonation front at the next time step then
can be accurately integrated in time with an ODE integrator of choice. For a det-
onation represented by a set of marked particles, such an conversion allows an easy
implementation of accurate time integration for each particle. If we are not seeking
a spatial accuracy higher than 3rd order, the method proposed in this paper would
provide an ideal solution with time advancement for tracking the propagation of a
detonation using a point representation of the front.

REFERENCES

[1]. Level-Set Techniques Applied to Modeling Detonation Shock Dynamics, T.
Aslam, J. Bdzil, and D. S. Stewart, Journal of Computational Physics, 126, 390-
409, 1996.

[2]. On the Dynamics of Multi-dimensional Detonation, J. Yao, and D. S. Stewart,
Journal of Fluid Mechanics, 309, 225-275, 1996.

[3]. Level Set Methods and Fast Marching Methods, J.A. Sethian, Cambridge Uni-
versity Press, 1999.

[4]. A Geometrical DSD Lighting Algorithm on Arbitrary Unstructured Meshes, J.
Yao, UCRL-JRNL-213932, Lawrence Livermore National Laboratory, 2005.

[5]. Test Problems for DSD2D, John B. Bdzil, Rudolph J. Henninger, and John, W.
Walter, LA-14277, 2006.

[6]. The Dynamics of Detonation in Explosive Systems, John B. Bdzil, and D. Scott
Stewart, Annual Review of Fluid Mechanics, Vol. 39:263-292, 2007.

[7]. A General Dead-Zone Predicted With The Detonation Shock Dynamics, J. Yao,
LLNL-TR-640104, 2013

9


